2023-24 MATH2048: Honours Linear Algebra II Homework 8

Due: 2023-11-13 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

- 1. Let V be an inner product space over F, show that
 - (a) If $x, y \in V$ are orthogonal, then $||x + y||^2 = ||x||^2 + ||y||^2$.
 - (b) $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$ for all $x, y \in V$ (The parallelogram law).
 - (c) Let v_1, v_2, \ldots, v_k be an orthogonal set in V, and let $a_1, a_2, \ldots, a_k \in F$. Then $\|\sum_{i=1}^k a_i v_i\|^2 = \sum_{i=1}^k |a_i|^2 \|v_i\|^2$.
- Prove that if V is an inner product space, then |⟨x, y⟩ = ||x|| · ||y|| if and only if one of the vectors x or y is a multiple of the other. Try to derive a similar result for the equality ||x + y|| = ||x|| + ||y||.
- 3. Let $V = M_{2 \times 2}(\mathbb{C})$. Apply the Gram–Schmidt process to

$$S = \left\{ \begin{pmatrix} 1-i & -2-3i \\ 2+2i & 4+i \end{pmatrix}, \begin{pmatrix} 8i & 4 \\ -3-3i & -4+4i \end{pmatrix}, \begin{pmatrix} -25-38i & -2-13i \\ 12-78i & -7+24i \end{pmatrix} \right\}$$

to obtain an orthogonal basis S' for span(S). Then normalize the vectors in S' to obtain an orthonormal basis S''.

- 4. Let V be a finite-dimensional inner product space over F.
 - (a) Parseval's Identity. Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal basis for V. For any $x, y \in V$ prove that $\langle x, y \rangle = \sum_{i=1}^n \langle x, v_i \rangle \overline{\langle y, v_i \rangle}$.
 - (b) Use (a) to prove that if β is an orthonormal basis for V with inner product $\langle \cdot, \cdot \rangle$, then for any $x, y \in V$, we have $\langle [x]_{\beta}, [y]_{\beta} \rangle' = \langle x, y \rangle$, where $\langle \cdot, \cdot \rangle'$ is the standard inner product on F^n .

- 5. (a) Bessel's Inequality. Let V be an inner product space, and let $S = v_1, v_2, \ldots, v_n$ be an orthonormal subset of V. Prove that for any $x \in V$ we have $||x||^2 \ge \sum_{i=1}^n |\langle x, v_i \rangle|^2$.
 - (b) In the context of (a), prove that Bessel's inequality is an equality if and only if x ∈ span(S).

The following are extra recommended exercises not included in homework.

- 1. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that v_1, v_2, \ldots, v_k are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_1 + v_2 + \cdots + v_k$ is in W, then $v_i \in W$ for all i. Hint: Use mathematical induction on k.
- 2. Let T be a linear operator on a vector space V, and let W_1, W_2, \ldots, W_k be T-invariant subspaces of V. Prove that $W_1 + W_2 + \cdots + W_k$ is also a T-invariant subspace of V.
- 3. Let T be a linear operator on a finite-dim vector space V, and let W_1, W_2, \ldots, W_k be T-invariant subspaces of V such that $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$. Prove that

$$\det(T) = \det(T_{W_1}) \det(T_{W_2}) \cdots \det(T_{W_k})$$

4. Provide reasons why each of the following is not an inner product on the given vector spaces.

(a)
$$\langle (a,b), (c,d) \rangle = ac - bd$$
 on \mathbb{R}^2 .

(b)
$$\langle A, B \rangle = tr(A + B)$$
 on $M_{2 \times 2}(\mathbb{R})$.

(c)
$$\langle f(x), g(x) \rangle = \int_0^1 f'(t)g(t)dt$$
 on $P(\mathbb{R})$.

- 5. Let β be a basis for a finite-dimensional inner product space.
 - (a) Prove that if $\langle x, z \rangle = 0$ for all $z \in \beta$, then x = 0.
 - (b) Prove that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$, then x = y.
- 6. Let T be a linear operator on an inner product space V, and suppose that ||T(x)|| = ||x|| for all x. Prove that T is one-to-one.
- 7. Let V be an inner product space over F. Prove the *polar identities*: For all $x, y \in V$,

(a)
$$\langle x, y \rangle = \frac{1}{4} ||x + y||^2 - \frac{1}{4} ||x - y||^2$$
 if $F = \mathbb{R}$.

(b) $\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^{4} i^{k} ||x + i^{k}y||^{2}$ if $F = \mathbb{C}$, where $i^{2} = -1$.

- 8. Let $V = F^n$ and let $A \in M_{n \times n}(F)$.
 - (a) Prove that $\langle x, Ay \rangle = \langle A^*x, y \rangle$ for all $x, y \in V$.
 - (b) Suppose that for some $B \in M_{n \times n}(F)$, we have $\langle x, Ay \rangle = \langle Bx, y \rangle$ for all $x, y \in V$. Prove that $B = A^*$.
 - (c) Let α be the standard ordered basis for V. For any orthonormal basis β for V, let Q be the $n \times n$ matrix whose columns are the vectors in β . Prove that $Q^* = Q^{-1}$.
 - (d) Define linear operators T and U on V by T(x) = Ax and $U(x) = A^*x$. Show that $[U]_{\beta} = [T]_{\beta}^*$ for any orthonormal basis β for V.