2023-24 MATH2048: Honours Linear Algebra II Homework 8

Due: 2023-11-13 (Monday) 23:59

For the following homework questions, please give reasons in your solutions. Scan your solutions and submit it via the Blackboard system before due date.

1. Let V be an inner product space over F, show that
(a) If $x, y \in V$ are orthogonal, then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.
(b) $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in V$ (The parallelogram law).
(c) Let $v_{1}, v_{2}, \ldots, v_{k}$ be an orthogonal set in V, and let $a_{1}, a_{2}, \ldots, a_{k} \in F$. Then $\left\|\sum_{i=1}^{k} a_{i} v_{i}\right\|^{2}=\sum_{i=1}^{k}\left|a_{i}\right|^{2}\left\|v_{i}\right\|^{2}$.
2. Prove that if V is an inner product space, then $\mid\langle x, y\rangle=\|x\| \cdot\|y\|$ if and only if one of the vectors x or y is a multiple of the other. Try to derive a similar result for the equality $\|x+y\|=\|x\|+\|y\|$.
3. Let $V=M_{2 \times 2}(\mathbb{C})$. Apply the Gram-Schmidt process to

$$
S=\left\{\left(\begin{array}{cc}
1-i & -2-3 i \\
2+2 i & 4+i
\end{array}\right),\left(\begin{array}{cc}
8 i & 4 \\
-3-3 i & -4+4 i
\end{array}\right),\left(\begin{array}{cc}
-25-38 i & -2-13 i \\
12-78 i & -7+24 i
\end{array}\right)\right\}
$$

to obtain an orthogonal basis S^{\prime} for $\operatorname{span}(S)$. Then normalize the vectors in S^{\prime} to obtain an orthonormal basis $S^{\prime \prime}$.
4. Let V be a finite-dimensional inner product space over F.
(a) Parseval's Identity. Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an orthonormal basis for V. For any $x, y \in V$ prove that $\langle x, y\rangle=\sum_{i=1}^{n}\left\langle x, v_{i}\right\rangle \overline{\left\langle y, v_{i}\right\rangle}$.
(b) Use (a) to prove that if β is an orthonormal basis for V with inner product $\langle\cdot, \cdot\rangle$, then for any $x, y \in V$, we have $\left\langle[x]_{\beta},[y]_{\beta}\right\rangle^{\prime}=\langle x, y\rangle$, where $\langle\cdot, \cdot \cdot\rangle^{\prime}$ is the standard inner product on F^{n}.
5. (a) Bessel's Inequality. Let V be an inner product space, and let $S=v_{1}, v_{2}, \ldots, v_{n}$ be an orthonormal subset of V. Prove that for any $x \in V$ we have $\|x\|^{2} \geq$ $\sum_{i=1}^{n}\left|\left\langle x, v_{i}\right\rangle\right|^{2}$.
(b) In the context of (a), prove that Bessel's inequality is an equality if and only if $x \in \operatorname{span}(S)$.

The following are extra recommended exercises not included in homework.

1. Let T be a linear operator on a finite-dimensional vector space V, and let W be a T-invariant subspace of V. Suppose that $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of T corresponding to distinct eigenvalues. Prove that if $v_{1}+v_{2}+\cdots+v_{k}$ is in W, then $v_{i} \in W$ for all i. Hint: Use mathematical induction on k.
2. Let T be a linear operator on a vector space V, and let $W_{1}, W_{2}, \ldots, W_{k}$ be T-invariant subspaces of V. Prove that $W_{1}+W_{2}+\cdots+W_{k}$ is also a T-invariant subspace of V.
3. Let T be a lineare operator on a finite-dim vector space V, and let $W_{1}, W_{2}, \ldots, W_{k}$ be T-invariant subspaces of V such that $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$. Prove that

$$
\operatorname{det}(T)=\operatorname{det}\left(T_{W_{1}}\right) \operatorname{det}\left(T_{W_{2}}\right) \cdots \operatorname{det}\left(T_{W_{k}}\right)
$$

4. Provide reasons why each of the following is not an inner product on the given vector spaces.
(a) $\langle(a, b),(c, d)\rangle=a c-b d$ on \mathbb{R}^{2}.
(b) $\langle A, B\rangle=\operatorname{tr}(A+B)$ on $M_{2 \times 2}(\mathbb{R})$.
(c) $\langle f(x), g(x)\rangle=\int_{0}^{1} f^{\prime}(t) g(t) d t$ on $P(\mathbb{R})$.
5. Let β be a basis for a finite-dimensional inner product space.
(a) Prove that if $\langle x, z\rangle=0$ for all $z \in \beta$, then $x=0$.
(b) Prove that if $\langle x, z\rangle=\langle y, z\rangle$ for all $z \in \beta$, then $x=y$.
6. Let T be a linear operator on an inner product space V, and suppose that $\|T(x)\|=$ $\|x\|$ for all x. Prove that T is one-to-one.
7. Let V be an inner product space over F. Prove the polar identities: For all $x, y \in V$,
(a) $\langle x, y\rangle=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2}$ if $F=\mathbb{R}$.
(b) $\langle x, y\rangle=\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|x+i^{k} y\right\|^{2}$ if $F=\mathbb{C}$, where $i^{2}=-1$.
8. Let $V=F^{n}$ and let $A \in M_{n \times n}(F)$.
(a) Prove that $\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle$ for all $x, y \in V$.
(b) Suppose that for some $B \in M_{n \times n}(F)$, we have $\langle x, A y\rangle=\langle B x, y\rangle$ for all $x, y \in V$. Prove that $B=A^{*}$.
(c) Let α be the standard ordered basis for V. For any orthonormal basis β for V, let Q be the $n \times n$ matrix whose columns are the vectors in β. Prove that $Q^{*}=Q^{-1}$.
(d) Define linear operators T and U on V by $T(x)=A x$ and $U(x)=A^{*} x$. Show that $[U]_{\beta}=[T]_{\beta}^{*}$ for any orthonormal basis β for V.
